EN
您所在位置: 首页 >> 师资队伍 >> 教授 >> 正文
董俊

系别:电子工程系

职称:教授、博导,学院副院长

邮箱:jdong@xmu.edu.cn

联系方式:0592-2580004

办公地点:

个人简历:

学历:

西安交通大学工学学士,金属材料及热处理专业;

西安交通大学工学硕士,金属材料及热处理专业;

中国科学院上海光学精密机械研究所工学博士,材料学专业。


研究方向:

固体激光技术、光学材料、激光模式特性研究、光学旋涡


主讲课程:

光电显示

激光材料及技术(研究生课)

固体激光器的研究进展及应用(研究生课)


学术兼职:

厦门市信息协会副会长, 2013-

美国光学协会(OSA)高级会员, 2013-

太阳集团官方网站入口工程技术学部委员,2014-


成果奖励:

福建省特支人才双百计划百千万工程领军人才, 2015

美国光学学会高级会员,2013

国务院政府特殊津贴专家,2012

新世纪百千万人才工程国家级人选,2009

教育部新世纪优秀人才,2009

电子信息类学生创新实验教学培养体系改革,福建省第七届高等教育教学成果奖一等奖,个人排名:第四,2014

以产业需求为导向,探索服务海西信息通信产业的人才培养新体制,福建省第七届高等教育教学成果奖二等奖,个人排名:第五,2014


课题项目:

基于复合材料的IG模式可控被动调Q微片激光器研究,国家自然科学基金面上项目,2015.01.01–2018.12.31,主持

基于Yb:YAG/Cr4+:YAG复合材料的高峰值功率被动调Q微片激光器研究,国家自然科学基金面上项目,2013.01.01–2016.12.31,主持

Cr4+:YAG作为可饱和吸收体、被动调Q Yb:YAG微片激光器实现高效率、高峰值功率、亚纳秒激光脉冲的输出,教育部新世纪优秀人才支持计划, 2010.01-2012.12,主持

Yb:YAG晶体取向选择不同偏振态微片激光器及其机理研究,教育部博士点基金项目新进教师基金项目2011.01- 2013.12,主持

高效率、高峰值功率、亚纳秒被动调Q Yb:YAG微片激光器,教育部留学回国人员科研启动基金项目,2010.09-2013.08,主持


代表作:

[1]Zhang MM, He HS, Dong J*, 2017. Decentered Gaussian beam pumped highly efficient passively Q-switched microchip laser for controllable high-order transverse modes. IEEE Photonics Journal 9(2): 1501214. (SCI)

[2]He HS, Chen Z, Dong J*, 2017. Direct generation of vector vortex beams with switchable radial and azimuthal polarizations in a monolithic Nd:YAG microchip laser. Applied Physics Express 10(5): 052701. (SCI)

[3]Wang XL, Dong J*, Wang XJ, Xu J, Ueda K, Kaminskii AA, 2016. Multi-wavelength Yb:YAG/Nd3+:YVO4 continuous-wave microchip Raman laser. Optics Letters 41(15): 3559-3562. (SCI)

[4]Xu J, Dong J*, 2016. Effect of a codoped interface layer on passively Q-switched laser performance of composite crystals. Applied Optics 55(23): 6516-6522. (SCI)

[5]Li CY, Dong J*, 2016. Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser. Journal of Modern Optics 63(14): 1323-1330. (SCI)

[6]He HS, Zhang MM, Dong J*, Ueda KI, 2016. Linearly polarized pumped passively Q-switched Nd:YVO4 microchip laser for Ince-Gaussian laser modes with controllable orientations. Journal of Optics 18(12): 125202. (SCI)

[7]Dong J*, Bai SC, Liu SH, Ueda KI, Kaminskii AA, 2016. A high repetition rate passively Q-switched microchip laser for controllable transverse laser modes. Journal of Optics 18(5): 055205. (SCI)

[8]Dong J*, He Y, Zhou X, Bai SC, 2016. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince-Gaussian modes for optical trapping. Quantum Electronics 46(3): 218-222. (SCI)

[9]Dong J*, He Y, Bai SC, Ueda KI, Kaminskii AA, 2016. A Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser for controllable high-order Hermite-Gaussian modes. Laser Physics 26(9): 095004. (SCI)

[10]Wang GY, Chen DM, Cheng Y, Dong J*, 2015. Yb:YAG enhanced Cr,Yb:YAG self-Q-switched microchip laser under QCW laser-diode pumping. Optics and Laser Technology 68: 136-140. (SCI)

[11]Bai SC, Dong J*, 2015. GTR-KTP enhanced stable intracavity frequency doubled Cr,Nd:YAG self-Q-switched green laser. Laser Physics 25(2): 025002. (SCI)

[12]Ren YY, Dong J*, 2014. Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal. Optics Communications 312: 163-167. (SCI)

[13]Dong J*, Ren YY, Cheng HH, 2014. > 1 MW peak power, an efficient Yb:YAG/Cr4+:YAG composite crystal passively Q-switched laser. Laser Physics 24(5): 055801. (SCI)

[14]Dong J*, Wang GY, Cheng Y, 2013. Highly efficient passively Q-switched Yb:YAG microchip lasers under high intensity laser-diode pumping. Laser Physics 23(3): 035802. (SCI)

[15]Dong J*, Ren YY, Wang GY, Cheng Y, 2013. Efficient laser performance of Yb:Y3Al5O12/Cr4+:Y3Al5O12 composite crystals. Laser Physics Letters 10(10): 105817. (SCI)

[16]Dong J*, Ma J, Ren YY, Xu GZ, Kaminskii AA, 2013. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr,Nd:YAG microchip lasers. Laser Physics Letters 10(8): 085803. (SCI)

[17]Bai SC, Dong J*, Zhou X, 2013. An efficient watt-class intracavity frequency doubled Cr,Nd:YAG/KTP miniature green laser. IEEE Photonics Technology Letters 25(9): 848-850. (SCI)

[18]Dong J*, Xu GZ, Ma J, Cao MJ, Cheng Y, Ueda K, Yagi H, Kaminskii AA, 2012. Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals. Optical Materials 34(6): 959-964. (SCI)

[19]Cheng Y, Dong J*, Ren YY, 2012. Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal. Optics Express 20(22): 24803-24812. (SCI)

[20]Zhou JY, Ma J, Dong J*, Cheng Y, Ueda K, Kaminskii AA, 2011. Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal. Laser Physics Letters 8(8): 591-597. (SCI)

[21]Ma J, Dong J*, Ueda K, Kaminskii AA, 2011. Optimization of Yb:YAG/Cr4+:YAG composite ceramics passively Q-switched microchip lasers. Applied Physics B-Lasers And Optics 105(4): 749-760. (SCI)

[22]Dong J*, Ma J, Ren YY, 2011. Polarization manipulated solid-state lasers with crystalline-orientations. Laser Physics 21(12): 2053-2058. (SCI)

[23]Dong J*, Ma J, Cheng Y, Ren YY, Ueda K, Kaminskii A, 2011. Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal. Laser Physics Letters 8(12): 845-852. (SCI)

[24]Dong J*, Ueda K, Yagi H, Kaminskii AA, 2010. Effect of polarization states on the laser performance of passively Q-switched Yb:YAG/Cr,Ca:YAG microchip lasers. IEEE Journal of Quantum Electronics 46(1): 50-56. (SCI)

[25]Dong J*, Ueda K, Kaminskii AA, 2010. Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm. Laser Physics Letters 7(10): 726-733. (SCI)

[26]Dong J*, Ueda K, Yang PZ, 2009. Multi-pulse oscillation and instabilities in microchip self-Q-switched transverse-mode laser. Optics Express 17(19): 16980-16993. (SCI)

[27]Dong J*, Ueda K, Yagi H, Kaminskii AA, Cai Z, 2009. Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals. Laser Physics Letters 6(4): 282-289. (SCI)

[28]Dong J*, Ueda KI, Yagi H, Kaminskii AA, 2008. Laser-diode pumped self-Q-switched microchip lasers. Optical Review 15(2): 57-74. (SCI)

[29]Dong J*, Ueda KI, Kaminskii AA, 2008. Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals. Optics Express 16(8): 5241-5251. (SCI)

[30]Dong J*, Shirakawa A, Ueda K, 2008. A crystalline-orientation self-selected linearly polarized Yb:Y3Al5O12 microchip laser. Applied Physics Letters 93(10): 101105. (SCI)

[31]Dong J*, Ueda KI, Shirakawa A, Yagi H, Yanagitani T, Kaminskii AA, 2007. Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers. Optics Express 15(22): 14516-14523. (SCI)

[32]Dong J*, Ueda KI, Kaminskii AA, 2007. Efficient passively Q-switched Yb:LuAG microchip laser. Optics Letters 32(22): 3266-3268. (SCI)

[33]Dong J*, Shirakawa A, Ueda KI, Yagi H, Yanagitani T, Kaminskii AA, 2007. Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW. Applied Physics Letters 90(13): 131105. (SCI)

[34]Dong J*, Shirakawa A, Ueda KI, Yagi H, Yanagitani T, Kaminskii AA, 2007. Laser-diode pumped heavy-doped Yb:YAG ceramic lasers. Optics Letters 32(13): 1890-1892. (SCI)

[35]Dong J*, Shirakawa A, Ueda KI, Kaminskii AA, 2007. Effect of ytterbium concentration on cwYb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling. Applied Physics B-Lasers and Optics 89(2-3): 367-376. (SCI)

[36]Dong J*, Shirakawa A, Ueda KI, Kaminskii AA, 2007. Effect of ytterbium concentration on cwYb:YAG microchip laser performance at ambient temperature - Part I: Experiments. Applied Physics B-Lasers and Optics 89(2-3): 359-365. (SCI)

[37]Dong J*, Shirakawa A, Ueda K, Yagi H, Yanagitani T, Kaminskii AA, 2007. Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser. Applied Physics Letters 90(19): 191106. (SCI)

[38]Dong J*, Shirakawa A, Ueda K, 2007. Switchable pulses generation in passively Q-switched multi longitudinal-mode microchip laser. Laser Physics Letters 4(2): 109-116. (SCI)



Top